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What is the Tempelhofer Feld?

� Former airport Berlin-Tempelhof (THF), air traffic was
ceased in 2008

� 300 hectare area that is mostly open space, used for
recreation (inline skating, kite surfing, ...)
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What is Online Participation?

� Involvement of citizens in relevant political or
administrative decisions

� Cities offer their citizens an internet-based way to
participate in drafting ideas for urban planning or in local
political issues

� Examples:
� Lörrach: sustainable urban development
� Darmstadt and Bonn: gather proposals in participatory

budgetings
� Berlin: Tempelhofer Feld
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Tempelhofer Feld + Online Participation

� Official online plattform1 that includes citiziens in the
planning of the area’s future

� ThF law entered into force in 2014: structural changes
are limited, for instance the construction of new buildings
on the field is prohibited

� The project aims to collect ideas that improve the field
for visitors while adhering to the ThF law.

� Official submission phase for proposals from November
2014 until the end of March 2015

1https://tempelhofer-feld.berlin.de

https://tempelhofer-feld.berlin.de
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Tempelhofer Feld + Online Participation

� Forum-like plattform with proposals and comments

� Until July 2015, users proposed 340 ideas and wrote
�1400 comments.

� �7000 sentences in the whole plattform

� Comments vary in length: on average 3.5 sentences
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Desired System Output

� Assume that you have thousands of text comments

� An automatic extraction approach should answer three
questions:

1. What are suggestions that politicians can decide upon?
2. What are reasons for/against the realization of these

suggestions?
3. How many citiziens express a pro/contra stance towards

these suggestions?
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Argumentation Model

� We tried to apply existing argumentation models, namely
Toulmin and the claim-premise scheme.

� We quickly realized that
� we have discourse between different users
� attacks on logical conclusions are rather rare
� users frequently express their wishes
� users participate by providing reasons for and against

other suggestions
� suggestions cannot be classified as true or false
� suggestions can be accepted without additional support
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Argumentation Model

� We decided to modify the claim-premise family and its
modification for persuasive essays from Stab and
Gurevych 20142 to a three-part model in online
participation processes: (i) major positions, (ii) claims,
and (iii) premises

� major positions:
� are options for actions or decisions that occur in the

discussion (e.g., “We should build a playground with a
sandbox.” or “The opening hours of the museum must
be at least two hours longer.”).

� are most often someone’s vision of something new or of
a policy change.

� In our practical view, major positions are unique
suggestions from citizens that politicians can decide on.

2Christian Stab and Iryna Gurevych. 2014. Annotating Argument
Components and Relations in Persuasive Essays. COLING
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Argumentation Model

� claims:
� are pro or contra stances towards a major position (e.g.

“Yes, we should definitely do that!”)

� premises:
� are defined as reasons that attack or support a major

position, a claim or another premise
� are used to make an argumentation comprehensible for

others, by reasoning why a suggestion or a decision
should be realized or why it should be avoided (e.g.
“This would allow us to save money.”)
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Argumentation Model

� Relations between the argument components

Premise

Claim

Major position
attack / support

pro / contra
stance

attack /
support attack /

support
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Annotation

� We used three annotators to annotate a subset of the
online participation project.

� The annotators used freely assignable spans. Multiple
annotations per sentence were possible.

� The dataset was annotated in the brat rapid annotation
tool :
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Inter-Annotator Agreement

� Before annotating our dataset, we took a subset (8
proposals and 74 comments, comprising 261 sentences
and 4.1k tokens) to measure the IAA among the three
annotators.

� We use DKPro Agreement to report our inter-annotator
agreement values

� Krippendorff’s unitized alpha αu

� token-based observed agreement Ao,t

� token-based Fleiss’ kappa κt

for the following three scenarios

(i) joint measures over all categories
(ii) category-specific values
(iii) argumentative vs. non-argumentative units
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Inter-Annotator Agreement

Ao,t κt αu

all 76.4 62.6 78.0

major positions 89.3 71.9 79.8
claims pro 96.3 66.1 59.0
claims contra 95.6 52.3 57.2
premises 80.9 61.5 80.1

AU / non-AU 90.7 49.1 92.4

� Reliable agreement between our three annotators:
� αu � 0.924 for argumentative versus non-argumentative

spans
� αu � 0.78 for the joint measure for all categories
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Statistics of the annotated corpus

� 72 proposals

� 575 comments

� �2400 sentences

� 88% of the tokens belong to argumentative spans

� 3.6% of the sentences were annotated with more than
one argument component
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Classification

� Preprocessing:
� OpenNLP: Sentence splitting and tokenization
� Mate Tools: POS-tagging and dependeny parsing

� Classification tasks:
� Subtask A: Classify sentences as argumentative or

non-argumentative
� Subtask B: Classify argument components in

argumentative sentences with exactly one annotated
argument component

� Training/Test data: 80% training set, 20 % test data
� Subtask A: �2000 sentences for training
� Subtask B: �1600 sentences for training
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Features

All features are sentence-based:

� n-Grams
� Unigrams
� Bigrams

� Grammatical features:
� L2-normalized POS-Tag distribution
� L2-normalized dependency distribution

� Structural features:
� token count
� comma count / token count
� dot count / token count
� last-token of a sentence as a one-hot encoding

(‘.’, ‘!’, ‘?’, ‘OTHER’)
� number of links
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Classification

� We evaluated three classifiers:
� SVM with an RBF kernel
� Random forest
� k-nearest neighbor

� Gridsearch with 10-fold cross validation on the training set

� Evaluation metric: macro-averaged F1

� We evaluated different feature combinations and report
their results:
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Results

Feature Set
AU / non-AU Argument Components

SVM RF k-NN SVM RF k-NN

Unigram 65.99 68.13 61.00 64.40 59.41 40.30
Unigram,lowercased 66.69 64.53 62.26 65.32 53.35 38.25
Bigram 41.79 50.48 16.25 46.62 50.42 11.51
Grammatical 55.88 52.24 48.52 59.54 47.89 46.81

U + G 69.77 58.39 64.87 68.50 57.13 35.90
U + G + Structural 67.50 61.14 54.07 65.99 59.46 47.27

Table: Macro-averaged F1 scores for the two classification
problems: (i) classifying sentences as argumentative and
non-argumentative, (ii) classifying sentences as major positions,
claims, and premises.
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Results

� The best results for both subtasks were achieved by an
SVM and unigrams + grammatical features.

� Confusion matrix for the best approach of subtask B:

Predicted
MP C P

°

A
ct

ua
l

MP 63 4 43 110
C 9 48 12 69
P 27 20 172 219°

99 72 227 398

� The classification of premises works well.

� Major positions are often misclassified as premises.
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Conclusion

� New corpus for German argumentation mining (will be
released shortly)

� Argumentation model for online participation

� Inter-annotator agreement study

� Two classification tasks:
� We evaluated different feature combinations and

multiple classifiers.
� The best results of 69.77% in subtask A and 68.5% in

subtask B were both achieved by a support vector
machine.
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Future Work

� Additional features to further increase our classification
results

� Automatically detect tokens that form a group, based on
the content. For this, we could use the token-based BIO
scheme, which divides tokens into beginning (B), inner
(I), and other (O) tokens of an argument component

� Identify more freely available corpora for online
participation to which we can apply our model for a
comparative study



Thanks for listening!
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